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 Portfolio optimization is a solution for investors to get the return as much as 

possible and also to minimize risk as small as possible. In this research, we use 

risk measures for portfolio optimization, namely mean-variance model. For 

single objective portfolio optimization problem, especially minimizing risk of 

portfolio, we used mean-variance as risk measure with constraint such as buy-

in thresholds. Buy-in thresholds set a lower limit on all assets that are part of 

portfolio. All this portfolio optimization problems will be solved by simulated 

annealing algorithm. The performance of the tested metaheuristics was good 

enough to solve portfolio optimization. 
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1. INTRODUCTION  

A portfolio is a set/group of financial assets such as stocks, bonds and cash equivalents, as well as 

their funds counterparts, including mutual, exchange-traded and closed funds. Portfolios are held directly by 

investors and/or managed by financial professionals. Prudence suggests that investors should construct an 

investment portfolio in accordance with risk tolerance and investing objectives (return).   

Portfolio optimization is an effort made by investors to get the maximum return and the smallest risk. 

But in fact, the desire to get a high return must be go along with a high risk. We can say that if we want high 

return, we also get high risk. 

The most important things in portfolio optimization problems are minimizing risk and maximize 

return. Models of optimization are often used to solve portfolio optimization problem is the mean-variance 

model. For first time, it was developed by Harry Markowitz in 1952.  This model is based on mean and variance 

approach. 

Markowitz mean-variance model of portfolio selection is one of the best models in finance. In its basic 

form, this model requires to determine the composition of a portfolio of assets which minimizes risk while 

achieving a predetermined level of expected return. From a practical point of view, however, the Markowitz 

model may often be considered too basic, because it ignores many of constraints faced by real-world investors 

: trading limitations, size of the portfolio, transaction fee, etc (see e.g. [1] for detail).  

Fact, in arranging a portfolio, we are not only focuses on minimizing risk or maximizing return, but 

also some constraints come along with it. Like buy-in thresholds, cardinality and roundlot. In this research we 

concerned with buy-in thresholds constraints.  Buy-in thresholds constraint set a lower limit on all assets that 
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are part of portfolio. Proportion of assets must higher than lower limit because if investors buy assets with too 

small proportion.  

The classical mean-variance framework relies on the perfect knowledge of the expected returns of the assets 

and the variance-covariance matrix [2]. However, these returns are unobservable and unknown. In this paper, 

the method used to solve portfolio optimization problem is simulated annealing (SA) algorithm. Simulated 

Annealing (SA) is a random-search technique which exploits an analogy between the way in which a metal 

cools and freezes into a minimum energy crystalline structure (the annealing process) and the search for a 

minimum in a more general system. SA was developed in 1983 to deal with highly nonlinear problems. SA 

approaches the global maximization problem similarly to using a bouncing ball that can bounce over mountains 

from valey to valley [3]. It begins at a high "temperature" which enables the ball to make very high bounces, 

which enables it to bounce over any mountain to access any valley, given enough bounces. As the temperature 

declines the ball cannot bounce so high, and it can also settle to become trapped in relatively 

small ranges of valleys. A generating distribution generates possible valleys or states to be explored. An 

acceptance distribution is also defined, which depends on the difference between the function value of 

the present generated valley to be explored and the last saved lowest valley. The acceptance distribution 

decides probabilistically whether to stay in a new lower valley or to bounce out of it. All the generating and 

acceptance distributions depend on the temperature. 

There are some previous study of portfolio optimization in single objective with mean-variance model 

and two constraints (buy in thresholds and roundlot). It has been done by Biggs – Kane using direct method 

[4]. It also has been done by Jobs – Mitra with adding cardinality constraints [5]. Chang ‘s research is about 

portfolio optimization with different measure of risk : mean – variance and MAD using genetic algorithm 

(GA). Chang do the computational with C++ software. Its result shows that GA method is quite effective for 

solving portfolio optimization problems [6].     

The remainder of this paper is organized in four sections. Section 2 introduces the portfolio selection 

model that we want to solve. Besides, there is basic structure of simulated annealing algorithms and contains 

a detailed description of simulated annealing algorithm. In Section 3, we show some result of simulation like 

the tested metaheuristic algorithm, some details of the implementation and computational experiments. The 

last section, Section 4 contains a summary of our work and some conclusions.   

 

 

2. PORTFOLIO OPTIMIZATION 

2.1.  The Markowitz mean-variance model 

Same as we mention in Section 1 that we concerned with mean variance model that introduced by 

Markowitz. The problem of optimally selecting a portfolio among n assets was formulated by Markowitz in 

1952 as a constrained quadratic minimization problem (see [7],[8]). In this model, each asset is measured by 

the variance of its return. If each component 𝑦𝑖of the 𝑛-vector 𝑦 represents the proportion of an investor’s 

wealth allocated to asset 𝑖, then the total return of the portfolio is given by scalar product of 𝑦 by the vector of 

individual asset returns.  

Ilustration of return assets are shown in Table 1. Mean return of 𝑛 assets in 𝑚 period is 𝑟̅𝑖 and 𝑖 =
1,2, … , 𝑛; 𝑗 = 1,2, … , 𝑚 and return asset 𝑖 in period 𝑗 denoted by  𝑟𝑖𝑗 . If 𝑅𝑗 denotes total return of each period 

then 
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𝑄 is variance-covariance matrix. Minimizing 
TQy y  equivalent with minimizing risk so its can be 

level risk of portfolio [9]. 

 

 

Table 1:  Return asset each periode 

 Periode 1 Periode 2 ⋯ Periode m 

Asset 1 
11r  12r  ⋯ 

1mr  

Asset 2 
21r  22r  ⋯ 

2mr  

⋮ ⋮ ⋮ ⋱ ⋮ 
Asset n 

1nr  2nr  ⋯ 
nmr  

 

 

2.2. Optimization Constraints  

Investors can arrange a portfolio so they can get the maximum return or minimum risk. In this 

subsection there are some constraints like Minrisk and Maxret. Minrisk is constraints that minimizing risk and 

Maxret is constraints that maximizing return. 

 Minrisk 0 

 Min 𝑉 = 𝑦𝑇𝑄𝑦 

 S.t.  𝑒𝑇𝑦 = 1 

Minrisk 0 can be solved by Lagrange multiplier method . 

           Min 𝐿(𝑦, 𝜔) = 𝑦𝑇𝑄𝑦 + 𝜔(1 − 𝑒𝑇𝑦) 

In order to achieve minimum conditions, it must follow the first order condition (FOC) 𝜕𝐿 𝜕𝒚 = 0⁄  dan 

𝜕𝐿 𝜕𝝎 = 0⁄ . Minrisk 0 problem with constraint can be changed into unconstrained problem by adding 

penalty function 

                Min 𝐹(𝑦) = 𝑦𝑇𝑄𝑦 + 𝜌(𝑒𝑇𝑦 − 1)2 

 where 𝜌 positive and large penalty constant.  

 

 Minrisk 1 

If investors wants to get some return from their portfolio, then we can adding return target 𝑅𝑝 to 

constraints. 

  Min 𝑉 = 𝑦𝑇𝑄𝑦 

 S.t.   𝑟̅𝑇𝑦 = 𝑅𝑝    ;      𝑒𝑇𝑦 = 1 

As minrisk 0, misnrisk 1 also can be changed into unconstrained problem by adding penalty constant. 

         Min 𝐹(𝑦) = 𝑦𝑇𝑄𝑦 + 𝜌 (
𝑟̅𝑇𝑦

𝑅𝑝
− 1)

2

+ 𝜌(𝑒𝑇𝑦 − 1)2 

 

 Minrisk 2 

In Minrisk 1 and Minrisk 0, there is a possibility that the proportions of shares are negative. It means there 

is possibility of investors do the short selling shares or assets. Short selling is the sale of a security/asset 

that is not owned by the seller, or that the seller has borrowed [10]. Short selling is motivated by the belief 

that a security’s price will decline, enabling it to be bought back at a lower price to make a profit. Short 
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selling may be prompted by speculation, or by the desire to hedge the downside risk of a long position in 

the same security or a related one. Since the risk of loss on a short sale is theoritically infinite, short selling 

should only be used by experienced traders who are familiar with its risks (see [10] for details). In order 

to avoid risk, we assume this constraints doesn’t contain short selling. We need additional constraints 

𝑦𝑖 = 𝑥𝑖
2 and 𝑦𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑛. 

     

 Min 𝑉 = 𝑦𝑇𝑄𝑦 

 S.t.   𝑟̅𝑇𝑦 = 𝑅𝑝    ;      𝑒𝑇𝑦 = 1   ;     𝑦𝑖 ≥ 0 

Or  

Min 𝐹(𝑦) = 𝑦𝑇𝑄𝑦 + 𝜌 (
𝑟̅𝑇𝑦

𝑅𝑝
− 1)

2

+ 𝜌(𝑒𝑇𝑦 − 1)2 

where −1 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1,2, … , 𝑛 and 𝜌 positive and large penalty constant. 

 

 Buy-in Thresholds 

An investor will avoid investing in an asset or stock with small proportion. That is because they have to 

pay the transaction fee, etc but the earned profit is too small. So for asset with small proportion will be 

ignored or not purchased. So they will take asset that proportion is larger than lower limit 𝑦𝑚𝑖𝑛.   

𝑦𝑖 = 0    𝑜𝑟    𝑦𝑖 ≥ 𝑦𝑚𝑖𝑛  

 

Minimizing 

𝐹(𝑦) = 𝑦𝑇𝑄𝑦 + 𝜌 (
𝑟̅𝑇𝑦

𝑅𝑝

− 1)

2

+ 𝜌(𝑒𝑇𝑦 − 1)2 + 𝑣 ∑ 𝜓(𝑦𝑖)2

𝑛

𝑖=1

 

where 𝜓(𝑦𝑖) = min{0, 𝜙(𝑦𝑖)} ,   𝜌, 𝑣 is large and positive constant (see [9]). 

𝜙(𝑦𝑖) =
4𝑦𝑖(𝑦𝑖 − 𝑦𝑚𝑖𝑛)

𝑦𝑚𝑖𝑛
2    ;     𝑖 = 1,2, … , 𝑛 

𝜙(𝑦𝑖) ≥ 0 if 𝑦𝑖 ≤ 0 or 𝑦𝑖 ≥ 𝑦𝑚𝑖𝑛 and −1 < 𝜙(𝑦𝑖) < 0 if 0 < 𝑦𝑖 < 𝑦𝑚𝑖𝑛.  

 

 

2.3. Simulated Annealing (SA) Algorithm 

There are many optimization methods for solve optimization problems. Usually the method used is a 

deterministic method such as Newton Method. However, not all optimization problems can be solve by gradient 

technique because in many optimization problems whose objective functions are not linear/non linear, are not 

continuous and have many minimum and maximum points. Therefore, metaheuristic methods show the 

solution of this optimization problem as non-gradient method.  Detailed discussions of simulated annealing 

can be found in van Laarhoven and Aarts [11], Aarts and Lenstra [12] or in the survey by Pirlot [13]. Here  we 

only give a very brief presentation of the method.  

SA is one of the neighborhood search methods that allows inferior solution. This method is a kind of  

heuristic algorithm. SA is one type of global optimization technique based on natural phenomena namely 

physic process of annealing (metal cooling). SA is a generic name for a class of optimization heuristics that 

perform a stochastic neighborhood search of the solution space. The major advantage of SA over classical local 

search methods is its ability to avoid getting trapped in local minima while searching for a global minimum. 

The underlying idea of the heuristic arises from analogy with certain thermodynamical processes (cooling of 

melted solid). Step of this algorithm can be seen at [1]. 

This algorithm simulates the minimization process of energy potential, which means minimization of 

feasible solution and energy minimization means minimizing the objective function. Suppose 𝑖 and 𝑗 are current 

and next states. 𝐸𝑖 and 𝐸𝑗 are energy states of  𝑖 and 𝑗. Probability of 𝑗 accepted inspired by thermodynamics 

model : 

𝑃(𝑎𝑐𝑐𝑒𝑝𝑡 𝑗) = {

1 𝑗𝑖𝑘𝑎 𝐸𝑗 ≤ 𝐸𝑖

exp (
𝐸𝑖 − 𝐸𝑗

𝑘𝐵𝑇
) 𝑗𝑖𝑘𝑎 𝐸𝑗 > 𝐸𝑖

 

where 𝑇 is the temperature at step n. 𝑘𝐵 is constant. 

There is some parameter that can be input data for simulation. 𝑇0 initial temperature (𝑇0 > 0), 𝐸 epoch 

length, 𝑟 cooling schedule/cooling rate (0 < 𝑟 < 1), 𝑖 initial value, 𝑛 step and number of maximum iteration 

itermax. (see [14] for details)  
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Figure 1. SA Algorithm for optimization 

 

 

 

3. RESULTS AND ANALYSIS  

3.1. Test Function 

Before we apply the SA to portfolio optimization, we will use benchmark function to test heuristic 

algorithm. If we can get the minimum point of those function, then algorithm can be used in optimization 

problem. One of  benchmark function is rastrigin function. 

𝑓(𝒙) = 10𝑑 + ∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)]

𝑑

𝑖=1

 

SA algorithm will find minimum point of rastrigin function in every iteration. At first iteration, 

position of the state is seen spread throughout the domain/area of the function. Then the state starts moving to 

search the minimum value of rastrigine function. As the increase of iteration number, they begin to gather in 

one point that is thought to be a minimum point. Until 2000 iteration, the points stop moving and finding the 

minimum value of the rastrigine function. 

 

 

Figure 2. Finding minimum value in 1st iteration  

 

while iter < itermax & found == false 

iterasi ke- k:=0 

 while 𝑘 < 𝐸 

  tetapkan neighbor state j. 

  𝛿 = 𝑓(𝑗) − 𝑓(𝑖) 

  if 𝛿 < 0 then 𝑖 = 𝑗 

   else if rand ( ) <exp (−
𝛿

𝑇
) then 𝑖 = 𝑗 

  end(if) 

 𝑘 = 𝑘 + 1 

 end(while) 

𝑇 = 𝑟 ∗ 𝑇 
iter = iter + 1 

end(while) 

xmin = i 

fmin = f(i) 
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Figure 3. Finding minimum value in 100th iteration  

 

 
Figure 4. Finding minimum value in 2000th iteration  

 

 

3.2. SA Implementation In Portfolio Optimization  

Given a historical data return of 5 assets over 10 periods, as follows in Table 2. Return target 𝑅𝑝 =

0.0112.  

 

Table 2 : Historical data return 5 assets over 10 periods 

 Return period Mean 

return 1 2 3 4 5 6 7 8 9 10 

Asset 

1 

0.012 0.013 0.014 0.015 0.011 0.012 0.011 0.01 0.01 0.011 0.0119 

Asset 

2 

0.013 0.01 0.008 0.009 0.014 0.013 0.012 0.011 0.012 0.011 0.0113 

Asset 

3 

0.009 0.011 0.01 0.011 0.011 0.013 0.012 0.011 0.01 0.011 0.0109 

Asset 

4 

0.011 0.011 0.012 0.013 0.012 0.012 0.011 0.01 0.011 0.012 0.0115 

Asset 

5 

0.008 0.0075 0.0065 0.0075 0.008 0.009 0.01 0.011 0.011 0.012 0.00905 

 

SA parameter used is 𝑇0 = 100, 𝐸 = 5, 𝑟 = 0.7,   𝑠𝑡𝑒𝑝 = 0.2, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = 3000. Result of portfolio 

optimization is shown in Table 3. In column Minrisk 1u there is negative proportion that means short selling. 

We want to avoid short selling. So in Minrisk 2u all of proportion has been positive because we referring to 

constraints Minrisk 2u that result of quadrate is positive. In column of buy-in threshold, we can see that all of 

proportion is higher than 𝑦𝑚𝑖𝑛or same as 𝑦𝑚𝑖𝑛. The purpose of Minrisk constraint is to minimize level risk of 

portfolio asset. Level of risk denoted by V. In Table 3 for all constraints we can see that V  has been minimum 
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limit to 0. So we can say that SA algorithm can solve portfolio optimization problem with several constraint 

like Minrisk 0, Minrisk 1, Minrisk 2 and buy-in thresholds.   

 

 

Table 3 : Result of SA algorithm in portfolio optimization problem 

 
Minrisk 1u Minrisk 2u 

Buy-in Thresholds 

𝑦𝑚𝑖𝑛 = 0.05 

𝑦1 0.50278 0.50246 0.45678 

𝑦2 0.30186 0.30121 0.28743 

𝑦3 -0.00058 0 0.05000 

𝑦4 0.02023 0.02014 0.05000 

𝑦5 0.18021 0.18019 0.16375 

𝑉 3.8943E-03 3.8943E-03 4.2311E-03 

𝐹 3.8943E-03 3.8943E-03 4.2311E-03 

𝑆 1 1 1 

Number of iteration 2893 2620 2994 

Time (second) 18.238 25.910 31.002 

 

 

 

4. CONCLUSION  

In this paper, we have formulated a heuristic Simulated Annealing to solve portfolio optimization 

problem. Portfolio optimization is a solution for investors to get the return as large as possible and make the 

risk as small as possible. For single objective portfolio optimization problem, especially minimizing risk of 

portfolio, will be used mean – variance as risk measure with constraint buy-in threshold.  

Based on result in Section 3, SA algorithm is fairly effective method for solving portfolio optimization 

problems especially for single objective problems. SA shows good results in searching minimum value for 

global solutions. The results of single objective cases has provided by SA is near optimal solution. SA also 

give us fast computing process and robust/near–good result. We get proportion of each assets  
(𝑦1, 𝑦2, 𝑦3 , 𝑦4, 𝑦5 ) that can be reduced risk as small as possible (𝑉 → 0).  
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